বিজ্ঞানের বিভিন্ন বিষয় সুনির্দিষ্টভাবে জানতে হলে কোন বা কোন ধরনের পরিমাপের প্রয়োজন হয়। পদার্থের যে সব ভৌত বৈশিষ্ট্য পরিমাপ করা যায় তাদেরকে রাশি (quantity) বলে। যেমন, দৈর্ঘ্য, ভর, সময়, আয়তন, বেগ, কাজ ইত্যাদি প্রত্যেকে এক একটি রাশি। পদার্থবিজ্ঞানের অন্তর্গত যে কোন রাশিকে ভৌত (physical) রাশি বলে।
কিছু কিছু ভৌত রাশিকে শুধুমাত্র মান দ্বারা সম্পূর্ণরূপে প্রকাশ করা যায়। আবার অনেক ভৌত রাশি রয়েছে যাদেরকে সম্পূর্ণরূপে প্রকাশ করার জন্য মান ও দিক উভয়ই প্রয়োজন হয়। তাই ধর্ম বা বৈশিষ্ট্য অনুসারে ভৌত রাশিগুলোকে আমরা দুই ভাগে বিভক্ত করতে পারি ; যথা—
(ক) স্কেলার রাশি বা অদিক রাশি (Scalar quantity)।
(খ) ভেক্টর রাশি বা দিক রাশি বা সদিক রাশি (Vector quantity)।
যে সব ভৌত রাশির শুধু মান আছে, কিন্তু দিক নেই, তাদেরকে স্কেলার রাশি বা অদিক রাশি বলে। যেমন দৈর্ঘ্য, ভর, সময়, জনসংখ্যা, তাপমাত্রা, তাপ, বৈদ্যুতিক বিভব, দ্রুতি, কাজ ইত্যাদি কেলার বা অদিক রাশি।
যে সব ভৌত রাশির মান এবং দিক দুই-ই আছে, তাদেরকে ভেক্টর রাশি বা দিক রাশি বলে। যেমন সরণ, বেগ, ত্বরণ, মন্দন, বল, ওজন ইত্যাদি ভেক্টর বা দিক রাশি।
কোন একটি ভেক্টর রাশিকে দুভাবে প্রকাশ করা হয়ে থাকে, যথা- (১) অক্ষর দ্বারা এবং (২) সরলরেখা দ্বারা।
১। অক্ষর দ্বারা কোন একটি ভেক্টর রাশিকে চারভাবে প্রকাশ করা হয়, যথা-
(ক) কোন অক্ষরের উপর তীর চিহ্ন দ্বারা রাশিটির ভেক্টর রূপ এবং এর দুই পাশের দুটি খাড়া রেখা দ্বারা এর মান নির্দেশ করা হয়। সাধারণভাবে শুধু অক্ষর দ্বারাও রাশিটির মান নির্দেশ করা হয়।
A অক্ষরের ভেক্টর রূপ Ā এবং মান রূপ | A | বা A
(খ) কোন অক্ষরের উপর রেখা চিহ্ন দ্বারা রাশিটির ভেক্টর রূপ এবং এর দুই পাশের দুটি খাড়া রেখ দ্বারা এর মান নির্দেশ করা হয়।
A অক্ষরের ভেক্টর রূপ Ā এবং মান রূপ । A
(গ) কোন অক্ষরের নিচে রেখা চিহ্ন দ্বারা রাশিটির ভেক্টর রূপ এবং এর দুই পাশের দুটি খাড়া রেখ দ্বারা এর মান নির্দেশ করা হয়।
A অক্ষরের ভেক্টর রূপ এবং মান রূপ | |
(ঘ) মোটা হরফের অক্ষর দিয়ে ভেক্টর রাশি প্রকাশ করা হয়। যেমন A অক্ষরের ভেক্টর রূপ এবং এর মান A ভেক্টর রাশি নির্দেশের ক্ষেত্রে (ক)-এ ব্যবহৃত চিহ্নই শ্রেয়। তাই এই বই-এ আমরা এই পদ্ধতিই ব্যবহার করব।
২। সরলরেখা দ্বারা ভেক্টর রাশি নির্দেশ করতে হলে রাশিটির দিকে বা সমান্তরালে একটি সরলরেখা অংকন করে সরলরেখাটির শেষ প্রান্তে একটি তীর চিহ্ন দ্বারা রাশিটির দিক এবং কোন স্কেলে উত্ত সরলরেখাটির দৈর্ঘ্য দ্বারা এর মান নির্দেশ করা হয়। এ পদ্ধতিকে জ্যামিতিক উপায়ে ভেক্টরের নির্দেশনাও বলে।
মনে করি, একটি ভেক্টর রাশির মান 5 এবং এর দিক পূর্ব দিক। একে সরলরেখা দ্বারা প্রকাশ করতে হবে। এখন AC একটি সরলরেখা পূর্ব- পশ্চিম দিক বরাবর অংকন করে AC সরলরেখা হতে সুবিধামত দৈর্ঘ্যকে একক ধরে এর 5 গুণ দৈর্ঘ্য AB কেটে নিই এবং AB-এর শেষ প্রান্তে পূর্ব দিকে তীর চিহ্ন যুক্ত করি [চিত্র ১:১]। এই তীর চিহ্নিত সরলরেখাই ভেক্টর রাশিটি নির্দেশ করবে। ভেক্টর রাশি নির্দেশী সরলরেখার তীর চিহ্নিত প্রান্ত B-কে শীর্ষবিন্দু বা অন্ত বিন্দু এবং অপর প্রান্ত A-কে আদিবিন্দু বা মূলবিন্দু বা পাদবিন্দু বলে।
একটি ভেক্টর রাশিকে সামান্তরিক সূত্রের দ্বারা বহুভাবে দুটি ভেক্টর রাশিতে বিভক্ত করা যায়। এই পদ্ধতির নাম ভেক্টর রাশির বিভাজন। সুতরাং একটি ভেক্টর রাশিকে দুই বা ততোধিক ভেক্টর রাশিতে বিভক্ত করার প্রক্রিয়াকে ভেক্টর রাশির বিভাজন বা বিশ্লেষণ বলে। এই বিভক্ত ভেক্টর রাশিগুলোর প্রত্যেকটিকে মূল ভেক্টর রাশির এক একটি অংশক বা উপাংশ (Component) বলে।
(i) যে কোন দুই উপাংশে বিভাজন :
মনে করি R একটি ভেক্টর রাশি। তীর চিহ্নিত OB সরলরেখাটি তার মান ও দিক নির্দেশ করছে [চিত্র ১.২২]। OB-এর সাথে দুই পাশে ও কোণ উৎপন্ন করে এরূপ দুটি দিকে একে দুটি উপাংশে বিভক্ত করতে হবে।
এখন O বিন্দু হতে OB-এর সাথে দুই পাশে এবং কোণ করে OA এবং OC রেখা দুটি টানি। OB-কে কর্ণ করে OABC সামান্তরিকটি অঙ্কন করি।
সুতরাং সামান্তরিকের সূত্রানুযায়ী OB দ্বারা সূচিত ভেক্টর রাশি <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>R</mi><mo>→</mo></mover></math> -এর দুটি অংশকের বা উপাংশের মান ও দিক <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi mathvariant="normal">OA</mi><mo>→</mo></mover></math> এবং <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi mathvariant="normal">OC</mi><mo>→</mo></mover></math> নির্দেশ করবে।
বর্ণনানুসারে OC এবং AB সমান্তরাল এবং OB তাদেরকে যুক্ত করেছে। কাজেই <ABO = <BOC =
এখন ত্রিকোণমিতি ও ত্রিভুজের ধর্মানুসারে OAB হতে আমরা পাই,
<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mi>O</mi><mi>A</mi></mrow><mrow><mi>s</mi><mi>i</mi><mi>n</mi><mo> </mo><mi>β</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><mi>A</mi><mi>B</mi></mrow><mrow><mi>s</mi><mi>i</mi><mi>n</mi><mo> </mo><mi>α</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><mi>O</mi><mi>B</mi></mrow><mrow><mi>s</mi><mi>i</mi><mi>n</mi><mo> </mo><mo><</mo><mi>O</mi><mi>A</mi><mi>B</mi></mrow></mfrac></math>
আবার AB = OC এবং <OAB = 180° - ( <AOB + <ABO) = 180° - (
<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mi>O</mi><mi>A</mi></mrow><mrow><mi>s</mi><mi>i</mi><mi>n</mi><mo> </mo><mi>β</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><mi>A</mi><mi>B</mi></mrow><mrow><mi>s</mi><mi>i</mi><mi>n</mi><mo> </mo><mi>α</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><mi>O</mi><mi>B</mi></mrow><mrow><mi>s</mi><mi>i</mi><mi>n</mi><mo> </mo><mfenced open="[" close="]"><mrow><mn>180</mn><mo>°</mo><mo>−</mo><mo>(</mo><mi>α</mi><mo>+</mo><mi>β</mi><mo>)</mo></mrow></mfenced></mrow></mfrac></math>
<math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi mathvariant="normal">OA</mi><mo>→</mo></mover></math> এবং <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi mathvariant="normal">OC</mi><mo>→</mo></mover></math> দ্বারা সূচিত উপাংশ দুটির মান যথাক্রমে P এবং Q-এর সমান ধরে আমরা পাই,
<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi>P</mi><mrow><mi>s</mi><mi>i</mi><mi>n</mi><mo> </mo><mi>β</mi></mrow></mfrac><mo>=</mo><mfrac><mi>Q</mi><mrow><mi>s</mi><mi>i</mi><mi>n</mi><mo> </mo><mi>α</mi></mrow></mfrac><mo>=</mo><mfrac><mi>R</mi><mrow><mi>s</mi><mi>i</mi><mi>n</mi><mo> </mo><mfenced open="[" close="]"><mrow><mn>180</mn><mo>°</mo><mo>−</mo><mrow><mo>(</mo><mrow><mi>α</mi><mo>+</mo><mi>β</mi></mrow><mo>)</mo></mrow></mrow></mfenced></mrow></mfrac><mo>=</mo><mfrac><mi>R</mi><mrow><mi>s</mi><mi>i</mi><mi>n</mi><mo> </mo><mo>(</mo><mi>α</mi><mo>+</mo><mi>β</mi><mo>)</mo></mrow></mfrac></math>
<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi><mo>=</mo><mfrac><mrow><mi>R</mi><mo> </mo><mi>s</mi><mi>i</mi><mi>n</mi><mo> </mo><mi>β</mi></mrow><mrow><mi>s</mi><mi>i</mi><mi>n</mi><mo> </mo><mo>(</mo><mi>α</mi><mo>+</mo><mi>β</mi><mo>)</mo></mrow></mfrac></math>
<math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">Q</mi><mo>=</mo><mfrac><mrow><mi>R</mi><mo> </mo><mi>s</mi><mi>i</mi><mi>n</mi><mo> </mo><mi mathvariant="normal">α</mi></mrow><mrow><mi>s</mi><mi>i</mi><mi>n</mi><mo> </mo><mrow><mo>(</mo><mrow><mi>α</mi><mo>+</mo><mi>β</mi></mrow><mo>)</mo></mrow></mrow></mfrac></math>
সমীকরণ (13) ও (14) R ভেক্টরের উপাংশের সমীকরণ।
যদি R ভেক্টরকে সমকোণে বিভাজিত করা হয় অর্থাৎ, P এবং Q উপাংশ দুটি পরস্পর সমকোণী হয় [চিত্র ১.২৩], তবে = 90°
<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>sin</mi><mfenced><mrow><mi>α</mi><mo>+</mo><mi>β</mi></mrow></mfenced><mo>=</mo><mi>sin</mi><mfenced><mrow><mn>90</mn><mo>°</mo></mrow></mfenced><mo>=</mo><mn>1</mn><mspace linebreak="newline"/><mi>sin</mi><mo> </mo><mi>β</mi><mo>=</mo><mi>sin</mi><mfenced><mrow><mn>90</mn><mo>°</mo><mo> </mo><mo>−</mo><mi>α</mi></mrow></mfenced><mo>=</mo><mi>cos</mi><mfenced><mi>α</mi></mfenced><mspace linebreak="newline"/><mfrac><mi>P</mi><mrow><mi>cos</mi><mfenced><mi>α</mi></mfenced></mrow></mfrac><mo>=</mo><mfrac><mi>Q</mi><mrow><mi>sin</mi><mfenced><mi>α</mi></mfenced></mrow></mfrac><mo>=</mo><mi>R</mi><mspace linebreak="newline"/><mi>P</mi><mo>=</mo><mi>R</mi><mo> </mo><mi>c</mi><mi>o</mi><mi>s</mi><mo> </mo><mi>α</mi><mspace linebreak="newline"/><mi>Q</mi><mo>=</mo><mi>R</mi><mo> </mo><mi>s</mi><mi>i</mi><mi>n</mi><mo> </mo><mi>α</mi></math>
একটি ভেক্টর রাশিকে একক ভেক্টর রাশির সাহায্যে প্রকাশ করতে গিয়ে আমরা দুটি বিষয় বিবেচনা করব। একটি দ্বিমাত্রিক ক্ষেত্র ও অপরটি ত্রিমাত্রিক ক্ষেত্র। নিম্নে বিষয় দুটি পৃথকভাবে আলোচিত হল।
ধরা যাক পরস্পর সমকোণে অবস্থিত OX ও OY সরলরেখা দুটি যথাক্রমে X ও Y অক্ষ নির্দেশ করছে [ চিত্র ১.২৪ ]। XY সমতলে X অক্ষের সাথে কোণে অবস্থিত OP রেখাটি দ্বারা r মানের একটি ভেক্টর রাশি <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>r</mi><mo>→</mo></mover></math> -এর মান ও দিক নির্দিষ্ট হয়েছে। আরও ধরা যাক P-এর স্থানাঙ্ক (x, y) এবং ধনাত্মক X ও Y অক্ষে একক ভেক্টর রাশি যথাক্রমে ও ।
P হতে X অক্ষের উপর PN লম্ব টানি ।
তা হলে চিত্র অনুসারে ON = x, NP = y এবং OP =r.
<math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mrow><mi>O</mi><mi>N</mi></mrow><mo>→</mo></mover><mo>=</mo><mi>x</mi><mover accent='true'><mi>i</mi><mo>^</mo></mover><mo>,</mo><mover accent='true'><mrow><mi>N</mi><mi>P</mi></mrow><mo>→</mo></mover><mo>=</mo><mi>y</mi><mover accent='true'><mi>j</mi><mo>^</mo></mover><mo>,</mo><mover accent='true'><mrow><mi>O</mi><mi>P</mi></mrow><mo>→</mo></mover><mo>=</mo><mover accent='true'><mi>r</mi><mo>→</mo></mover></math>
এখন, ত্রিভুজ সূত্র অনুসারে,
<math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mrow><mi>O</mi><mi>P</mi></mrow><mo>→</mo></mover><mo>=</mo><mover accent='true'><mrow><mi>O</mi><mi>N</mi></mrow><mo>→</mo></mover><mo>+</mo><mover accent='true'><mrow><mi>N</mi><mi>P</mi></mrow><mo>→</mo></mover><mspace linebreak="newline"/><mover accent='true'><mi>r</mi><mo>→</mo></mover><mo>=</mo><mi>x</mi><mover accent='true'><mi>i</mi><mo>^</mo></mover><mo>+</mo><mi>y</mi><mover accent='true'><mi>j</mi><mo>^</mo></mover></math>
চিত্র ১:২৪ হতে আমরা পাই,
<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>O</mi><msup><mi>P</mi><mn>2</mn></msup><mo>=</mo><mi>O</mi><msup><mi>N</mi><mn>2</mn></msup><mo>+</mo><mi>N</mi><msup><mi>P</mi><mn>2</mn></msup><mspace linebreak="newline"/><msup><mi>r</mi><mn>2</mn></msup><mo>=</mo><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><msup><mi>y</mi><mn>2</mn></msup><mspace linebreak="newline"/><mi>r</mi><mo>=</mo><msqrt><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><msup><mi>y</mi><mn>2</mn></msup></mrow></msqrt><mspace linebreak="newline"/></math>
<math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi mathvariant="normal">r</mi><mo>→</mo></mover></math> বা <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi mathvariant="normal">r</mi><mo>→</mo></mover></math> -এর সমান্তরাল একক ভেক্টর :
<math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi mathvariant="normal">r</mi><mo>→</mo></mover></math> বরাবর বা <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi mathvariant="normal">r</mi><mo>→</mo></mover></math> -এর সমাস্তরাল একক ভেক্টর,
<math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>r</mi><mo>^</mo></mover><mo> </mo><mo>=</mo><mfrac><mover accent='true'><mi>r</mi><mo>→</mo></mover><mi>r</mi></mfrac><mo>=</mo><mfrac><mrow><mi>x</mi><mover accent='true'><mi>i</mi><mo>^</mo></mover><mo>+</mo><mi>y</mi><mover accent='true'><mi>j</mi><mo>^</mo></mover></mrow><msqrt><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><msup><mi>y</mi><mn>2</mn></msup></mrow></msqrt></mfrac></math>
= = x + y + z. এখানে P-এর অবস্থানাঙ্ক (x, y, z) |
প্রমাণ : ধরা যাক, পরস্পর সমকোণে অবস্থিত OX, OY ও OZ সরলরেখা তিনটি যথাক্রমে X, Y ও z অক্ষ নির্দেশ করছে | চিত্র ১২৫ ।। OP রেখাটি এই অক্ষ ব্যবস্থায় মানের একটি ভেক্টর রাশি নির্দেশ করছে। আরও মনে করি P-এর স্থানাঙ্ক (x,y,z) এবং ধনাত্মক X, Y ও Z অক্ষে একক ভেক্টর রাশি যথাক্রমে | PN রেখাটি হল XY সমতলের উপর এবং NQ রেখাটি হল OX-এর উপর লম্ব।
তা হলে <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mrow><mi>O</mi><mi>P</mi></mrow><mo>→</mo></mover></math> = <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mrow><mi>O</mi><mi>N</mi></mrow><mo>→</mo></mover></math> + <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mrow><mi>N</mi><mi>P</mi></mrow><mo>→</mo></mover></math>
<math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mrow><mi>O</mi><mi>N</mi></mrow><mo>→</mo></mover></math> = <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mrow><mi>O</mi><mi>Q</mi></mrow><mo>→</mo></mover></math> + <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mrow><mi>O</mi><mi>N</mi></mrow><mo>→</mo></mover></math>
<math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mrow><mi>O</mi><mi>P</mi></mrow><mo>→</mo></mover></math> = <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mrow><mi>O</mi><mi>Q</mi></mrow><mo>→</mo></mover></math> + <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mrow><mi>O</mi><mi>N</mi></mrow><mo>→</mo></mover></math> + <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mrow><mi>N</mi><mi>P</mi></mrow><mo>→</mo></mover></math>
কিন্তু,
একটি ভেক্টর রাশিকে একক ভেক্টর রাশির সাহায্যে প্রকাশ করতে গিয়ে আমরা কেবল ত্রিমাত্রিক আয়তাকার বিস্তারের ভেক্টরের বিভাজন বিবেচনা করব।
ত্রিমাত্রিক স্থানাঙ্ক ব্যবস্থায় কোনো অবস্থান ভেক্টরকে নিম্নলিখিত উপায়ে লেখা যায় যা ত্রিমাত্রিক আয়তাকার বিস্তারের ভেক্টরের বিভাজন হিসেবে বিবেচিত হয়।
এখানে P-এর অবস্থানাঙ্ক (x,y,z)
ধরা যাক, পরস্পর সমকোণে অবস্থিত OX, OYOZ সরলরেখা তিনটি যথাক্রমে X Y Z অক্ষ নির্দেশ করছে।চিত্র ২:২১]। OP রেখাটি এই অক্ষ ব্যবস্থায় r মানের একটি ভেক্টর রাশি <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>r</mi><mo>→</mo></mover></math> নির্দেশ করছে।
আরও মনে করি <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>OP</mi><mo>→</mo></mover></math> ভেক্টরের শীর্ষবিন্দু P-এর স্থানাঙ্ক (x,y,z) এবং ধনাত্মক X, Y ও Z অক্ষে একক ভেক্টর রাশি যথাক্রমে । PN রেখাটি হলো XY সমতলের উপর এবং NQ রেখাটি হলো OX-এর উপর লম্ব।
চিত্র হতে ভেক্টর যোগের নিয়ম অনুসারে পাই,
<math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mrow><mi>O</mi><mi>P</mi></mrow><mo>→</mo></mover><mo>=</mo><mover accent='true'><mrow><mi>O</mi><mi>N</mi></mrow><mo>→</mo></mover><mo>+</mo><mover accent='true'><mrow><mi>N</mi><mi>P</mi></mrow><mo>→</mo></mover><mspace linebreak="newline"/><mover accent='true'><mrow><mi>O</mi><mi>N</mi></mrow><mo>→</mo></mover><mo>=</mo><mover accent='true'><mrow><mi>O</mi><mi>Q</mi></mrow><mo>→</mo></mover><mo>+</mo><mover accent='true'><mrow><mi>Q</mi><mi>N</mi></mrow><mo>→</mo></mover><mspace linebreak="newline"/><mover accent='true'><mrow><mi>O</mi><mi>P</mi></mrow><mo>→</mo></mover><mo>=</mo><mover accent='true'><mrow><mi>O</mi><mi>Q</mi></mrow><mo>→</mo></mover><mo>+</mo><mover accent='true'><mrow><mi>Q</mi><mi>N</mi></mrow><mo>→</mo></mover><mo>+</mo><mover accent='true'><mrow><mi>N</mi><mi>P</mi></mrow><mo>→</mo></mover><mspace linebreak="newline"/></math>
কিন্তু <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mrow><mi>O</mi><mi>Q</mi></mrow><mo>→</mo></mover><mo>=</mo><mi>x</mi><mover accent='true'><mi>i</mi><mo>^</mo></mover><mo>,</mo><mover accent='true'><mrow><mi>O</mi><mi>P</mi></mrow><mo>→</mo></mover><mo>=</mo><mi>y</mi><mover accent='true'><mi>j</mi><mo>^</mo></mover><mo>,</mo><mover accent='true'><mrow><mi>O</mi><mi>P</mi></mrow><mo>→</mo></mover><mo>=</mo><mo>,</mo><mover accent='true'><mrow><mi>O</mi><mi>P</mi></mrow><mo>→</mo></mover><mo>=</mo><mi>z</mi><mover accent='true'><mi>k</mi><mo>^</mo></mover></math>
:- <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>r</mi><mo>→</mo></mover><mo>=</mo><mi>x</mi><mover accent='true'><mi>i</mi><mo>^</mo></mover><mo>+</mo><mi>y</mi><mover accent='true'><mi>j</mi><mo>^</mo></mover><mo>+</mo><mi>z</mi><mover accent='true'><mi>k</mi><mo>^</mo></mover></math>
এখানে x y ও z হলো যথাক্রমে X, Y ও Z অক্ষ বরাবর<math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>r</mi><mo>→</mo></mover></math> ভেক্টরের উপাংশের মান এবং<math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>r</mi><mo>→</mo></mover></math> হলো ত্রিমাত্রিক স্থানাঙ্ক ব্যবস্থার অবস্থান ভেক্টর।
চিত্র ২.২১ হতে, OP2 = ON2 + NP2 এবং ON2 = OQ2 + QN2
OP2 = OQ2 + QN2 + NP2 বা, r2 = x2 + y2 + z2
:- <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>r</mi><mo>^</mo></mover><mo>=</mo><mfrac><mover accent='true'><mi>r</mi><mo>→</mo></mover><mi>r</mi></mfrac><mo>=</mo><mfrac><mrow><mi>x</mi><mover accent='true'><mi>i</mi><mo>^</mo></mover><mo>+</mo><mi>y</mi><mover accent='true'><mi>j</mi><mo>^</mo></mover><mo>+</mo><mi>z</mi><mover accent='true'><mi>k</mi><mo>^</mo></mover></mrow><msqrt><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><msup><mi>y</mi><mn>2</mn></msup><mo>+</mo><msup><mi>z</mi><mn>2</mn></msup></mrow></mfenced></msqrt></mfrac></math> .. (2.17)
দুটি দিক রাশি বা ভেক্টর রাশির গুণফল সাধারণত দুই প্রকার, যথা—
এই দুটি গুণন বা গুণফল নিম্নে পৃথক পৃথকভাবে আলোচনা করা হল।
দুটি ভেক্টর রাশির কেলার গুণফল একটি স্কেলার রাশি হবে যার মান রাশি দুটির মান এবং তাদের মধ্যবর্তী কোণের কোসাইনের (cosine) গুণফলের সমান। ভেক্টর রাশি দুটির মাঝে (.) চিহ্ন দিয়ে ডট গুণফল প্রকাশ করা হয় এবং পড়তে হয় “প্রথম রাশি ডট দ্বিতীয় রাশি।”
বা, স্কেনার গুণফল দুটি ভেক্টরের মানের গুণফলের সাথে তাদের মধ্যবর্তী কোণের কোসাইনের গুণফল।
ব্যাখ্যা ঃ মনে করি <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>P</mi><mo>→</mo></mover></math> ও <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>Q</mi><mo>→</mo></mover></math> দুটি ভেক্টর রাশি। তীর চিহ্নিত OA ও OC সরলরেখা রাশি দুটির মান ও দিক নির্দেশ করছে [চিত্র ২.৩০)। এরা পরস্পরের সাথে কোণে আনত। তাদের স্কেলার বা অদিক গুণফল = <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>P</mi><mo>→</mo></mover></math>. <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>Q</mi><mo>→</mo></mover></math> দ্বারা নির্দেশ করা হয় এবং পড়তে হয় <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>P</mi><mo>→</mo></mover></math> ডট <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>Q</mi><mo>→</mo></mover></math> কাজেই সংজ্ঞা অনুসারে পাই,
<math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>P</mi><mo>→</mo></mover></math> . <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>Q</mi><mo>→</mo></mover></math> = l <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>P</mi><mo>→</mo></mover></math> l <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>Q</mi><mo>→</mo></mover></math> l cos α
বা, <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>P</mi><mo>→</mo></mover></math> <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>Q</mi><mo>→</mo></mover></math> = PQ cos α .. (33)
এখানে 0 <α <π
সমীকরণ (33) হতে দেখা যায়, গুণফল একটি স্কেলার রাশি।
(ক) যদি α = 0° হয়, তবে <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>P</mi><mo>→</mo></mover></math>.<math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>Q</mi><mo>→</mo></mover></math> - PQ cos 0° = PQ। এক্ষেত্রে ভেক্টর দুটি পরস্পরের সমান্তরাল হবে।
(খ) যদি α = 90° হয়, তবে <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>P</mi><mo>→</mo></mover></math>.<math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>Q</mi><mo>→</mo></mover></math> =PQ cos 90° = 0 । এক্ষেত্রে ভেক্টর দুটি পরস্পর লম্ব হবে।
(গ) যদি α= 180° হয়, তবে <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>P</mi><mo>→</mo></mover></math>.<math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>Q</mi><mo>→</mo></mover></math>= PQ cos 180° = - PQ। এক্ষেত্রে ভেক্টর দুটি পরস্পরের সমান্তরাল এবং বিপরীতমুখী হবে।
বল <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>F</mi><mo>→</mo></mover></math> এবং সরণ <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>s</mi><mo>→</mo></mover></math> উভয়েই ভেক্টর রাশি। কিন্তু এদের স্কেলার গুণফল কাজ (W) একটি স্কেলার রাশি অর্থাৎ
W = .<math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>F</mi><mo>→</mo></mover></math>.<math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>s</mi><mo>→</mo></mover></math> = Fs cos α.. (34)
স্থিতিশক্তি, বৈদ্যুতিক বিভব ইত্যাদিও ভেক্টর রাশির স্কেলার গুণফলের উদাহরণ।
ব্যাখ্যা : মনে করি .<math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>P</mi><mo>→</mo></mover></math> ও .<math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>Q</mi><mo>→</mo></mover></math> দুটি ভেক্টর রাশি। এরা পরস্পরের সাথে α কোণে O বিন্দুতে ক্রিয়া করে।
অতএব এদের ভেক্টর গুণফল বা দিক গুণফল—
<math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>R</mi><mo>→</mo></mover></math> = <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>P</mi><mo>→</mo></mover></math> × <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>Q</mi><mo>→</mo></mover></math> =
বা, <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>R</mi><mo>→</mo></mover></math> = <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>P</mi><mo>→</mo></mover></math> × <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>Q</mi><mo>→</mo></mover></math>
=
এখানে (ইটা) একটি একক ভেক্টর <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>R</mi><mo>→</mo></mover></math> এর দিক নির্দেশ করে [ চিত্র ২.৩১ ও ২.৩২ ]।
ডান হাতি স্ক্রু নিয়ম : ভেক্টর দুটি যে সমতলে অবস্থিত সেই সমতলের উপর লম্বভাবে একটি ডান হাতি স্কুকে রেখে প্রথম ভেক্টর হতে দ্বিতীয় ভেক্টরের দিকে ক্ষুদ্রতম কোণে ঘুরালে স্কুটি যে দিকে অগ্রসর হয় সেই দিকই হবে <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>R</mi><mo>→</mo></mover></math> তথা এর দিক।
উপরোক্ত নিয়ম অনুসারে <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>P</mi><mo>→</mo></mover></math> × <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>Q</mi><mo>→</mo></mover></math> এর অভিমুখ হবে উপরের দিকে। চিত্র ১-৩৩] এবং <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>Q</mi><mo>→</mo></mover></math> x <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>P</mi><mo>→</mo></mover></math> এর অভিমুখ হবে নিচের দিকে [চিত্র ২.৩৪] অর্থাৎ প্রথম ক্ষেত্রে ডান হাতি স্কুর দিক হবে ঘড়ির কাটার বিপরীতমুখী (Anti- clockwise) এবং দ্বিতীয় ক্ষেত্রে ঘড়ির কাঁটার দিকে (Clockwise) । Anti-clockwise direction positive (ধনাত্মক) ধরা হয় এবং clockwise direction-কে Negative (ঋণাত্মক) ধরা হয়।
একটি ভেক্টর রাশি যে ধ্রুবক হবে এমন কোনো কথা নেই। একটি ভেক্টর রাশি অন্য স্কেলার রাশির উপর নির্ভর করতে পারে। যেমন গতিশীল বস্তুর অবস্থান ভেক্টর <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>r</mi><mo>→</mo></mover></math>সময় t এর উপর নির্ভর করে, অর্থাৎ অবস্থান ভেক্টর <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>r</mi><mo>→</mo></mover></math> হচ্ছে সময় t এর অপেক্ষক। তেমনিভাবে সুষম ত্বরণে গতিশীল।
বস্তুর বেগ <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>v</mi><mo>→</mo></mover></math>হচ্ছে সময় t এর অপেক্ষক। কোনো তড়িৎ আধান কর্তৃক সৃষ্ট তড়িৎক্ষেত্রের কোনো বিন্দুর তড়িৎ প্রাবল্য আধান থেকে বিন্দুটির দূরত্বের উপর নির্ভর করে। সাধারণ স্কেলার রাশির ন্যায় ভেক্টর রাশিরও অন্তরীকরণ করা যায়। ধরা যাক, <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>R</mi><mo>→</mo></mover></math> একটি ভেক্টর যা স্কেলার রাশি u এর উপর নির্ভর করে অর্থাৎ ভেক্টর রাশি <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>R</mi><mo>→</mo></mover></math> দুই স্কেলার রাশি " এর অপেক্ষক বা <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>R</mi><mo>→</mo></mover></math> (u)। তাহলে
<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>△</mo><mover accent='true'><mi>R</mi><mo>→</mo></mover></mrow><mrow><mo>△</mo><mi>u</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><mover accent='true'><mi>R</mi><mo>→</mo></mover><mfenced><mrow><mi>u</mi><mo>+</mo><mo>△</mo><mi>u</mi></mrow></mfenced><mo>−</mo><mover accent='true'><mi>R</mi><mo>→</mo></mover><mfenced><mi>u</mi></mfenced></mrow><mrow><mo>△</mo><mi>u</mi></mrow></mfrac></math> এখানে u হলো “ এর বৃদ্ধি এবং ∆<math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>R</mi><mo>→</mo></mover></math>হলো <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>R</mi><mo>→</mo></mover></math> এর বৃদ্ধি (চিত্র : ২.৩৫)।
তাহলেu এর সাপেক্ষে <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>R</mi><mo>→</mo></mover></math> এর অন্তরক হবে,
<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mi>d</mi><mover accent='true'><mi>R</mi><mo>→</mo></mover></mrow><mrow><mo>△</mo><mi>u</mi></mrow></mfrac><mo>=</mo><munder accentunder='false'><mrow><mi>l</mi><mi>i</mi><mi>m</mi></mrow><mrow><mo>△</mo><mi>u</mi><mo>→</mo><mn>0</mn></mrow></munder><mfrac><mrow><mo>△</mo><mover accent='true'><mi>R</mi><mo>→</mo></mover></mrow><mrow><mo>△</mo><mi>u</mi></mrow></mfrac><mo>=</mo><munder accentunder='false'><mrow><mi>l</mi><mi>i</mi><mi>m</mi></mrow><mrow><mo>△</mo><mi>u</mi><mo>→</mo><mn>0</mn></mrow></munder><mfrac><mrow><mover accent='true'><mi>R</mi><mo>→</mo></mover><mfenced><mrow><mi>u</mi><mo>+</mo><mo>△</mo><mi>u</mi></mrow></mfenced><mo>−</mo><mover accent='true'><mi>R</mi><mo>→</mo></mover><mfenced><mi>u</mi></mfenced></mrow><mrow><mo>△</mo><mi>u</mi></mrow></mfrac></math>.. (2.26)
যদি কোনো স্থানের একটি এলাকায় প্রতিটি বিন্দুতে <math xmlns="http://www.w3.org/1998/Math/MathML"><mo> </mo><mi>Ψ</mi></math>(x, y, z)কে একটি অন্তরীকরণযোগ্য রাশি হিসেবে সংজ্ঞায়িত করা যায় অর্থাৎ <math xmlns="http://www.w3.org/1998/Math/MathML"><mo> </mo><mi>Ψ</mi></math> যদি একটি অন্তরীকরণযোগ্য স্কেলার অপেক্ষক হয়, তাহলে এর গ্রেডিয়েন্ট বা grad <math xmlns="http://www.w3.org/1998/Math/MathML"><mo> </mo><mi>Ψ</mi></math> বা <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>i</mi><mo>^</mo></mover><msub><mi>V</mi><mi>x</mi></msub><mo>+</mo><mover accent='true'><mi>j</mi><mo>^</mo></mover><msub><mi>V</mi><mi>y</mi></msub><mo>+</mo><mover accent='true'><mi>k</mi><mo>^</mo></mover><msub><mi>V</mi><mi>z</mi></msub></math> <math xmlns="http://www.w3.org/1998/Math/MathML"><mo> </mo><mi>Ψ</mi></math> এর সংজ্ঞা হলো :
<math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mrow><msub><mo>▽</mo><mi>Ψ</mi></msub></mrow><mo>→</mo></mover><mo>=</mo><mfenced><mrow><mover accent='true'><mi>i</mi><mo>^</mo></mover><mfrac><mo>∂</mo><mrow><mo>∂</mo><mi>x</mi></mrow></mfrac><mo>−</mo><mover accent='true'><mi>j</mi><mo>^</mo></mover><mfrac><mo>∂</mo><mrow><mo>∂</mo><mi>y</mi></mrow></mfrac><mo>+</mo><mover accent='true'><mi>k</mi><mo>^</mo></mover><mfrac><mo>∂</mo><mrow><mo>∂</mo><mi>z</mi></mrow></mfrac></mrow></mfenced><mi>Ψ</mi><mspace linebreak="newline"/><mo>=</mo><mover accent='true'><mi>i</mi><mo>^</mo></mover><mfrac><mrow><mo>∂</mo><mi mathvariant="normal">Ψ</mi></mrow><mrow><mo>∂</mo><mi>x</mi></mrow></mfrac><mo>−</mo><mover accent='true'><mi>j</mi><mo>^</mo></mover><mfrac><mrow><mo>∂</mo><mi mathvariant="normal">Ψ</mi></mrow><mrow><mo>∂</mo><mi>y</mi></mrow></mfrac><mo>+</mo><mover accent='true'><mi>k</mi><mo>^</mo></mover><mfrac><mrow><mo>∂</mo><mi mathvariant="normal">Ψ</mi></mrow><mrow><mo>∂</mo><mi>z</mi></mrow></mfrac><mspace linebreak="newline"/></math>.. (2.31)
এটি একটি ভেক্টর রাশি। এর মান অবস্থানের সাপেক্ষে ঐ স্কেলার রাশির সর্বোচ্চ বৃদ্ধিহার নির্দেশ করে। তাছাড়া এ বৃদ্ধিহারের দিকই হবে স্কেলার রাশিটির গ্রেডিয়েন্টের দিক। স্কেলার ক্ষেত্র থেকে ভেক্টর ক্ষেত্রে উত্তরণের কৌশলই হচ্ছে স্কেলার রাশির গ্রেডিয়েন্ট নির্ণয় করা। গ্রেডিয়েন্ট হলো বিভিন্ন অক্ষের সাপেক্ষে কোনো স্কেলার ফাংশনের ঢাল।
যদি কোনো স্থানের একটি এলাকায় প্রতিটি বিন্দুতে <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>V</mi><mo>→</mo></mover></math>(x, y, z) = <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>i</mi><mo>^</mo></mover><msub><mi>V</mi><mi>x</mi></msub><mo>+</mo><mover accent='true'><mi>j</mi><mo>^</mo></mover><msub><mi>V</mi><mi>y</mi></msub><mo>+</mo><mover accent='true'><mi>k</mi><mo>^</mo></mover><msub><mi>V</mi><mi>z</mi></msub></math> কে একটি অন্তরীকরণযোগ্য
রাশি হিসেবে সংজ্ঞায়িত করা যায় অর্থাৎ <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>V</mi><mo>→</mo></mover></math> যদি একটি অন্তরীকরণযোগ্য ভেক্টর অপেক্ষক হয়, তাহলে <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>V</mi><mo>→</mo></mover></math> এর ডাইভারজেন্স
(div <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>V</mi><mo>→</mo></mover></math>) বা <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mo>▽</mo><mo>→</mo></mover><mo>×</mo><mover accent='true'><mi>V</mi><mo>→</mo></mover></math> এর সংজ্ঞা হলো :
<math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mo>▽</mo><mo>→</mo></mover><mo>×</mo><mover accent='true'><mi>V</mi><mo>→</mo></mover><mo>=</mo><mfenced><mrow><mover accent='true'><mi>i</mi><mo>^</mo></mover><mfrac><mo>∂</mo><mrow><mo>∂</mo><mi>x</mi></mrow></mfrac><mo>+</mo><mover accent='true'><mi>j</mi><mo>^</mo></mover><mfrac><mo>∂</mo><mrow><mo>∂</mo><mi>y</mi></mrow></mfrac><mo>+</mo><mover accent='true'><mi>k</mi><mo>^</mo></mover><mfrac><mo>∂</mo><mrow><mo>∂</mo><mi>z</mi></mrow></mfrac></mrow></mfenced><mo>×</mo><mfenced><mrow><mover accent='true'><mi>i</mi><mo>^</mo></mover><msub><mi>V</mi><mi>x</mi></msub><mo>+</mo><mover accent='true'><mi>j</mi><mo>^</mo></mover><msub><mi>V</mi><mi>y</mi></msub><mo>+</mo><mover accent='true'><mi>k</mi><mo>^</mo></mover><msub><mi>V</mi><mi>z</mi></msub></mrow></mfenced><mspace linebreak="newline"/><mover accent='true'><mo>▽</mo><mo>→</mo></mover><mo>×</mo><mover accent='true'><mi>V</mi><mo>→</mo></mover><mo>=</mo><mfrac><mo>∂</mo><mrow><mo>∂</mo><mi>x</mi></mrow></mfrac><mo>+</mo><mfrac><mo>∂</mo><mrow><mo>∂</mo><mi>y</mi></mrow></mfrac><mo>+</mo><mfrac><mo>∂</mo><mrow><mo>∂</mo><mi>z</mi></mrow></mfrac><mspace linebreak="newline"/></math>... (2.32)
লক্ষ্যণীয় যে, ডাইভারজেন্স <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>V</mi><mo>→</mo></mover></math> হচ্ছে <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mo>▽</mo><mo>→</mo></mover></math> এবং <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>V</mi><mo>→</mo></mover></math> এর ডট বা স্কেলার গুণফল এবং এটি একটি স্কেলার রাশি।
ডাইভারজেন্সের মাধ্যমে একটি ভেক্টর ক্ষেত্রকে স্কেলার ক্ষেত্রে রূপান্তর করা যায়। উল্লেখ্য যে, <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>A</mi><mo>→</mo></mover></math>. <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>B</mi><mo>→</mo></mover></math> = <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>B</mi><mo>→</mo></mover></math>. <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>A</mi><mo>→</mo></mover></math> হলেও কোনোভাবেই <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mo>▽</mo><mo>→</mo></mover><mo>×</mo><mover accent='true'><mi>V</mi><mo>→</mo></mover></math> = <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>V</mi><mo>→</mo></mover></math>. <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mo>▽</mo><mo>→</mo></mover></math> হবে না। কোনো ভেক্টর ক্ষেত্রের কোনো বিন্দুতে কোনো প্রবাহীর ডাইভারজেন্স ধনাত্মক হলে বুঝতে হবে, হয় প্রবাহীটি প্রসারিত হচ্ছে অর্থাৎ এর ঘনত্ব হ্রাস পাচ্ছে অথবা বিন্দুটি প্রবাহীটির একটি উৎস।
আবার ডাইভারজেন্স ঋণাত্মক হলে, হয় প্রবাহীটি সঙ্কুচিত হচ্ছে অর্থাৎ ঐ বিন্দুতে এর ঘনত্ব বৃদ্ধি প্রাপ্ত হচ্ছে বা বিন্দুটি একটি ঋণাত্মক উৎস বা সিঙ্ক ।
আবার কোনো ভেক্টর ক্ষেত্রের ডাইভারজেন্স শূন্য হলে ঐ ভেক্টর ক্ষেত্রকে সলিনয়ডাল বলে। অর্থাৎ এক্ষেত্রে ঐ বিন্দুতে যে পরিমাণ প্রবাহী প্রবেশ করে ঠিক সেই পরিমাণ প্রবাহী বেরিয়েও যাবে। অর্থাৎ এক্ষেত্রে div <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>V</mi><mo>→</mo></mover></math> = 0
যদি কোনো স্থানের একটি এলাকায় প্রতিটি বিন্দুতে <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>V</mi><mo>→</mo></mover></math>(x, y, z) =<math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>i</mi><mo>^</mo></mover><msub><mi>V</mi><mi>x</mi></msub><mo>+</mo><mover accent='true'><mi>j</mi><mo>^</mo></mover><msub><mi>V</mi><mi>y</mi></msub><mo>+</mo><mover accent='true'><mi>k</mi><mo>^</mo></mover><msub><mi>V</mi><mi>z</mi></msub></math> কে একটি অন্তরীকরণযোগ্য রাশি হিসেবে সংজ্ঞায়িত করা যায় অর্থাৎ <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>V</mi><mo>→</mo></mover></math> যদি একটি অন্তরীকরণযোগ্য ভেক্টর অপেক্ষক হয়, তাহলে <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>V</mi><mo>→</mo></mover></math>এর কার্ল
(curl <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>V</mi><mo>→</mo></mover></math>) বা <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mo>△</mo><mo>→</mo></mover><mo>×</mo><mover accent='true'><mi>V</mi><mo>→</mo></mover></math> এর সংজ্ঞা হলো :
<math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mo>△</mo><mo>→</mo></mover><mo>×</mo><mover accent='true'><mi>V</mi><mo>→</mo></mover><mo>=</mo><mfenced><mrow><mover accent='true'><mi>i</mi><mo>^</mo></mover><mfrac><mo>∂</mo><mrow><mo>∂</mo><mi>x</mi></mrow></mfrac><mo>−</mo><mover accent='true'><mi>j</mi><mo>^</mo></mover><mfrac><mo>∂</mo><mrow><mo>∂</mo><mi>y</mi></mrow></mfrac><mo>+</mo><mover accent='true'><mi>k</mi><mo>^</mo></mover><mfrac><mo>∂</mo><mrow><mo>∂</mo><mi>z</mi></mrow></mfrac></mrow></mfenced><mo>×</mo><mfenced><mrow><mover accent='true'><mi>i</mi><mo>^</mo></mover><msub><mi>V</mi><mi>x</mi></msub><mo>+</mo><mover accent='true'><mi>i</mi><mo>^</mo></mover><msub><mi>V</mi><mi>y</mi></msub><mo>+</mo><mover accent='true'><mi>i</mi><mo>^</mo></mover><msub><mi>V</mi><mi>z</mi></msub></mrow></mfenced><mspace linebreak="newline"/><mover accent='true'><mo>△</mo><mo>→</mo></mover><mo>×</mo><mover accent='true'><mi>V</mi><mo>→</mo></mover><mo>=</mo><mfenced open="|" close="|"><mrow><mfrac><mover accent='false'><mo>∂</mo><mover accent='true'><mi>i</mi><mo>^</mo></mover></mover><munder accentunder='false'><mo>∂</mo><mrow><msub><mi>V</mi><mi>x</mi></msub></mrow></munder></mfrac><mfrac><mover accent='false'><mo>∂</mo><mover accent='true'><mi>j</mi><mo>^</mo></mover></mover><munder accentunder='false'><mo>∂</mo><mrow><msub><mi>V</mi><mi>y</mi></msub></mrow></munder></mfrac><mfrac><mover accent='false'><mo>∂</mo><mover accent='true'><mi>k</mi><mo>^</mo></mover></mover><munder accentunder='false'><mo>∂</mo><mrow><msub><mi>V</mi><mi>z</mi></msub></mrow></munder></mfrac></mrow></mfenced><mo>=</mo><mfenced><mrow><mfrac><mo>∂</mo><mrow><mo>∂</mo><mi>y</mi></mrow></mfrac><mo>−</mo><mfrac><mo>∂</mo><mrow><mo>∂</mo><mi>z</mi></mrow></mfrac></mrow></mfenced><mover accent='true'><mi>i</mi><mo>^</mo></mover><mo>+</mo><mfenced><mrow><mfrac><mrow><mo>∂</mo><msub><mi>V</mi><mi>x</mi></msub></mrow><mrow><mo>∂</mo><mi>z</mi></mrow></mfrac><mo>−</mo><mfrac><mrow><mo>∂</mo><msub><mi>V</mi><mi>z</mi></msub></mrow><mrow><mo>∂</mo><mi>x</mi></mrow></mfrac></mrow></mfenced><mover accent='true'><mi>j</mi><mo>^</mo></mover><mo>+</mo><mfenced><mrow><mfrac><mrow><mo>∂</mo><msub><mi>V</mi><mi>y</mi></msub></mrow><mrow><mo>∂</mo><mi>x</mi></mrow></mfrac><mo>−</mo><mfrac><mrow><mo>∂</mo><msub><mi>V</mi><mi>x</mi></msub></mrow><mrow><mo>∂</mo><mi>y</mi></mrow></mfrac></mrow></mfenced><mover accent='true'><mi>k</mi><mo>^</mo></mover><mo>.</mo><mo>.</mo></math> ... (2.33)
কোনো ভেক্টর ক্ষেত্রের কার্ল একটি ভেক্টর রাশি। এ ভেক্টরটির দিক ঐ ক্ষেত্রের উপর অঙ্কিত লম্ব বরাবর। এটি ঐ ক্ষেত্রের ঘূর্ণন ব্যাখ্যা করে। কোনো বিন্দুর চারদিকে ভেক্টরটি কতবার ঘোরে কার্ল তা নির্দেশ করে। যদি কোনো ভেক্টরের কার্ল শূন্য হয় তবে এটি অঘূর্ণনশীল (irrotational) হবে। অর্থাৎ <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mo>△</mo><mo>→</mo></mover><mo>×</mo><mover accent='true'><mi>V</mi><mo>→</mo></mover></math>= <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>0</mi><mo>→</mo></mover></math> হলে <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>V</mi><mo>→</mo></mover></math> ক্ষেত্রটি অঘূর্ণনশীল এবং সংরক্ষণশীল আর <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mo>△</mo><mo>→</mo></mover><mo>×</mo><mover accent='true'><mi>V</mi><mo>→</mo></mover></math>= <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>0</mi><mo>→</mo></mover></math> হলে <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>V</mi><mo>→</mo></mover></math> ক্ষেত্রটি ঘূর্ণনশীল এবং অসংরক্ষণশীল । রৈখিক বেগ <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>v</mi><mo>→</mo></mover></math> এর কার্ল কৌণিক বেগ <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>ω</mi><mo>→</mo></mover></math> এর দ্বিগুণ, অর্থাৎ <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mo>△</mo><mo>→</mo></mover><mo>×</mo><mover accent='true'><mi>v</mi><mo>→</mo></mover></math> = 2<math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>ω</mi><mo>→</mo></mover></math> । কোনো ভেক্টরের কার্লের মান ঐ ভেক্টরের ক্ষেত্রে একক ক্ষেত্রফলের উপর সর্বোচ্চ রেখা যোগজের সমান। কোনো ভেক্টর ক্ষেত্রের কার্লের ডাইভারজেন্স শূন্য অর্থাৎ (<math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mo>△</mo><mo>→</mo></mover><mo>×</mo><mover accent='true'><mi>V</mi><mo>→</mo></mover></math>)= 0 l
কোনো স্থানের কোনো এলাকা বা অঞ্চলের প্রতিটি বিন্দুতে যদি একটি স্কেলার রাশি [ (x, y, z) ] বিদ্যমান থাকে, তবে ঐ অঞ্চলকে ঐ রাশির স্কেলার ক্ষেত্র বলে ।
এখানে (x, y, z) কে বলা হয় একটি স্কেলার ফাংশন এবং ঐ অঞ্চলে একটি স্কেলার ক্ষেত্র নির্দেশ করে। যেমন, ঢাকা শহরের প্রতিটি বিন্দুতে একটি তাপমাত্রা আছে। যেকোনো সময়ে এ শহরের যেকোনো বিন্দুতে তাপমাত্রা জানা যাবে। তাপমাত্রা একটি স্কেলার রাশি। তাপমাত্রাকে আমরা একটা স্কেলার ফাংশন এবং ঢাকা শহরকে তাপমাত্রার স্কেলার ক্ষেত্র বিবেচনা করতে পারি। তেমনি কোনো আহিত বস্তুর চারপাশে তড়িৎ বিভব থাকে। যেহেতু তড়িৎ বিভব স্কেলার রাশি,
আমরা বলতে পারি আহিত বস্তুর চারপাশে একটি স্কেলার ক্ষেত্র বিদ্যমান। উদাহরণ : (x, y, z) = 5x2y - 3yz একটি স্কেলার ক্ষেত্র নির্দেশ করে।
এখানে <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>V</mi><mo>→</mo></mover></math>(x, y, z) কে বলা হয় একটি ভেক্টর ফাংশন এবং <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>V</mi><mo>→</mo></mover></math> ঐ অঞ্চলে একটি ভেক্টর ক্ষেত্র নির্দেশ করে। যেমন কোনো প্রবহমান তরল পদার্থের ভিতরে প্রতিটি বিন্দুতে তরলের একটি বেগ আছে। যেকোনো সময়ে তরলের যেকোনো বিন্দুতে এর বেগ জানা যায়। বেগ একটি ভেক্টর রাশি। বেগকে আমরা একটি ভেক্টর ফাংশন এবং প্রবহমান তরলকে বেগের ভেক্টর ক্ষেত্র বিবেচনা করতে পারি। তেমনি একটি আহিত বস্তুর চারপাশে তড়িৎ প্রাবল্য থাকে। যেহেতু তড়িৎ প্রাবল্য ভেক্টর রাশি, আমরা বলতে পারি আহিত বস্তুর চারপাশে একটি ভেক্টর ক্ষেত্র বিদ্যমান।
ভেক্টর ক্যালকুলাসে বহুল ব্যবহৃত অপারেটরটি হচ্ছে <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mo>▽</mo><mo>→</mo></mover></math> (ডেল)। স্যার হ্যামিলটন এটি আবিষ্কার করেন। আগে এটি নাবলা নামে পরিচিত ছিল । এটি একটি ভেক্টর অপারেটর। <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mo>▽</mo><mo>→</mo></mover></math> হচ্ছে,
<math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mo>▽</mo><mo>→</mo></mover></math> = <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>i</mi><mo>^</mo></mover><mfrac><mo>∂</mo><mrow><mo>∂</mo><mi>x</mi></mrow></mfrac><mo>+</mo><mover accent='true'><mi>j</mi><mo>^</mo></mover><mfrac><mo>∂</mo><mrow><mo>∂</mo><mi>y</mi></mrow></mfrac><mo>+</mo><mover accent='true'><mi>k</mi><mo>^</mo></mover><mfrac><mo>∂</mo><mrow><mo>∂</mo><mi>z</mi></mrow></mfrac></math>
ভেক্টর অপারেটরের সাহায্যে তিনটি রাশি তৈরি করা হয় যেগুলো পদার্থবিজ্ঞানের বিভিন্ন সূত্র ও তত্ত্ব ব্যাখ্যা করতে খুবই প্রয়োজন হয় । এগুলো হচ্ছে গ্রেডিয়েন্ট, ডাইভারজেন্স ও কার্ল।
১। একক ভেক্টর (Unit vector) : যে ভেক্টর রাশির মান এক একক তাকে একক ভেক্টর বলে। মান শূন্য নয় এরূপ একটি ভেক্টরকে এর মান দ্বারা ভাগ করলে ঐ ভেক্টরের দিকে বা সমান্তরালে একটি একক ভেক্টর পাওয়া যাবে।
একক ভেক্টরকে প্রকাশ করতে সাধারণত ছোট অক্ষরের উপর একটি টুপি চিহ্ন (^) দেয়া হয়। যেমন-
ইত্যাদি দ্বারা একক ভেক্টর প্রকাশ করা হয়।
ধরি, একটি ভেক্টর যার মান, A ≠ 0
-এর দিকে একক ভেক্টর
কাজেই কোন একটি ভেক্টর এর মান, A = 4 একক এবং এর দিকে একক ভেক্টর হলে, [চিত্র ১:২]। অর্থাৎ কোন ভেক্টরের মানকে ঐ ভেক্টরের একক ভেক্টর দ্বারা গুণ করলে ভেক্টরটি পাওয়া যায়।
২। সম-ভেক্টর বা সমান ভেক্টর (Equal vector) : একই দিকে ক্রিয়ারত একাধিক সমজাতীয় ভেক্টরের মান সমান হলে তাদেরকে সম-ভেক্টর বা সমান ভেক্টর বলে। পাদবিন্দু বা আদিবিন্দু যেখানেই হোক না কেন ভেক্টরগুলো পরস্পরের সমাস্তরান এবং মান সমান হলে তাদেরকে সম-ভেক্টর বলে।
১.৩ চিত্রে P, Q, S তিনটি সম-ভেক্টর।
৩। বিপরীত বা ঋণ ভেক্টর (Negative vector) : বিপরীত দিকে ক্রিয়ারত দুটি সমজাতীয় ভেক্টরের মান সমান হলে তাদেরকে একে অপরের বিপরীত বা ঋণ ভেক্টর বলে।
১.৪ চিত্রে
এর বিপরীত ভেক্টর
এখানে, AB = BA
৪। স্বাধীন ভেক্টর ( Free vector) : কোন ভেক্টর রাশির পাদবিন্দু কোথায় হবে তা যদি ইচ্ছেমত ঠিক করা যায়, তবে ঐ ভেক্টরকে স্বাধীন ভেক্টর বলা হয়। । [চিত্র ১.৫-এ একটি স্বাধীন ভেক্টর। ]
৫। সীমাবদ্ধ ভেক্টর (Localised vector) : যদি কোন নির্দিষ্ট বিন্দুকে ভেক্টরের পাদবিন্দু হিসেবে ঠিক করে রাখা হয়, তবে তাকে সীমাবদ্ধ ভেক্টর বলে।
৬। অবস্থান ভেক্টর (Position vector) : প্রসঙ্গ কাঠামোর মূল বিন্দুর সাপেক্ষে কোন বিন্দুর অবস্থান যে ভেক্টরের সাহায্যে নির্ণয় করা হয় তাকে অবস্থান ভেক্টর বলে।
মনে করি পরস্পর সমকোণে অবস্থিত X ও Y দুটি অক্ষ, এদের মূল বিন্দু OI P যে কোন একটি বিন্দু।
এখানে ভেক্টরটি O বিন্দু সাপেক্ষে P বিন্দুর অবস্থান নির্দেশ করছে। সুতরাং একটি অবস্থান ভেক্টর [চিত্র ১.৬ ]।
অবস্থান ভেক্টরকে অনেক সময় ব্যাসার্ধ ভেক্টর (radius vector) বলে এবং দিয়ে প্রকাশ করা হয়।
৭। সদৃশ ভেক্টর ( Like vector) : সমজাতীয় অসম মানের দুটি ভেক্টর ও যদি একই দিকে ক্রিয়া করে তবে তাদেরকে সদৃশ ভেক্টর বলে [চিত্র ১:৭]। উদাহরণ,
৮। বিসদৃশ ভেক্টর (Unlike vector) : সমজাতীয় অসম মানের দুটি ভেক্টর <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>A</mi><mo>→</mo></mover></math> ও <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>B</mi><mo>→</mo></mover></math> যদি বিপরীত দিকে ক্রিয়া করে, তবে তাদেরকে বিসদৃশ ভেক্টর বলে । চিত্র [১.৮]।
৯। নাল বা শূন্য ভেক্টর (Null or Zero vector) : যে ভেক্টর রাশির মান শূন্য, তাকে নাল বা শূন্য ভেক্টর বলে। শূন্য ভেক্টরের পাদবিন্দু এবং শীর্ষবিন্দু একই। একে 0 দ্বারা সূচিত করা হয়।
১০। আয়তাকার বা আয়ত একক ভেক্টর (Rectangular unit vector) : ত্রিমাত্রিক স্থানাঙ্ক ব্যবস্থায় ধনাত্মক X, Y এবং Z অক্ষের দিকে ব্যবহৃত যথাক্রমে এবং একক ভেক্টরগুলোকে আয়তাকার বা আয়ত একক ভেক্টর বলে।
১১। বিপ্রতীপ ভেক্টর (Reciprocal vector) : দুটি সমান্তরাল ভেক্টরের একটির মান অপরটির বিপ্রতীপ হলে তাদেরকে বিপ্রতীপ ভেক্টর বলে। উদাহরণ, <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>A</mi><mo>→</mo></mover></math> = , <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>B</mi><mo>→</mo></mover></math> = । এখানে <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>A</mi><mo>→</mo></mover></math> ও <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>B</mi><mo>→</mo></mover></math> বিপ্রতীপ ভেক্টর।
১২। সমরেখ ভেক্টর (Co-linear vector) : দুই বা ততোধিক ভেক্টর এমন হয় যে তারা একই রেখায় বা সমান্তরালে ক্রিয়া করে, তাদেরকে সমরেখ ভেক্টর বলে [চিত্র ১.১০]
১৩। সম-তলীয় ভেক্টর (Co-planar vector) : দুই বা ততোধিক ভেক্টর একই তলে অবস্থান করলে তাদেরকে সম-তলীয় ভেক্টর বলে [চিত্র ১.১১]।
১৪। সঠিক ভেক্টর (Proper vector ): যে সকল ভেক্টরের মান শূন্য নয়, তাদেরকে সঠিক ভেক্টর বলে।
১৫। সম-প্রারম্ভিক ভেক্টর (Co-initial vector) : একই মূল বা পাদবিন্দুবিশিষ্ট ভেক্টরসমূহকে সম- প্রারম্ভিক ভেক্টর বলে।
একই জাতীয় দুটি ভেক্টর রাশিকে যোগ বা বিয়োগ করা যায়। যেমন সরণের সাথে কেবল সরণই যোগ বা বিয়োগ করা চলে। সরণের সাথে বেগের যোগ বা বিয়োগের প্রশ্নই ওঠে না।
যেমন ধরা যাক, একটি নৌকায় দাঁড়ের বেগ ঘণ্টায় 8 কিলোমিটার এবং একটি নদীর পানির স্রোতের বেগ ঘণ্টায় 6 কিলোমিটার। নৌকাটিকে ঐ নদীর এক পাড় হতে সোজা অপর পাড়ের দিকে চালালে, নৌকাটির উপর যে দুটি বেগ ক্রিয়া করবে এদের যোগফল (8 + 6) = 14 কিলোমিটার / ঘণ্টা দ্বারা নৌকাটির প্রকৃত বেগ পাওয়া যাবে না—প্রকৃত বেগ সম্পূর্ণ আলাদা হবে। আবার নৌকাটির গতিমুখ ঐ দুই বেগের মাঝামাঝি কোন এক দিকে হবে। এই কারণে ভেক্টর রাশির যোগ-বিয়োগ জ্যামিতিক পদ্ধতি অনুসারে করতে হয়।
একই অভিমুখী দুটি ভেক্টর রাশি যোগ করতে হলে রাশি দুটিকে একই দিকে নির্দেশ করতে হয়, আর বিয়োগ করতে হলে একটি ভেক্টর রাশিকে অপরটির বিপরীত দিকে নির্দেশ করতে হয়। কিন্তু দুই বা ততোধিক ভেক্টর রাশি একটি বিন্দুতে ক্রিয়া করলে এদের যোগফল আর একটি নতুন ভেক্টর রাশি হবে। দুই বা ততোধিক ভেক্টর রাশি যোগে যে একটি নতুন ভেক্টর রাশি হয় তাকে এদের লবি ( Resultant) বলে। অর্থাৎ লব্ধি হল ভেক্টর রাশিগুলোর সম্মিলিত ফল।
জ্যামিতিক পদ্ধতিতে ভেক্টর রাশির যোগ নিম্নলিখিত পাঁচটি সূত্রের সাহায্যে করা যায়; যথা-
(১) সাধারণ সূত্র (General law)
(২) ত্রিভুজ সূত্র (Law of triangle )
(৩) বহুভুজ সূত্র (Law of polygon )
(৪) সামান্তরিক সূত্র (Law of parallelogram) এবং
(৫) উপাংশ সূত্র (Law of components)
এই অনুচ্ছেদে প্রথম চারটি সূত্র আলোচনা করা হল :
সূত্র : সমজাতীয় দুটি ভেক্টরের প্রথমটির শীর্ষ বা শেষবিন্দু এবং দ্বিতীয়টির আদি বিন্দু একই বিন্দুতে স্থাপন করে প্রথম ভেক্টরের আদি বিন্দু ও দ্বিতীয় ভেক্টরের শীর্ষবিন্দুর মধ্যে সংযোগকারী সরলরেখার দিকে লব্ধি ভেক্টরের দিক এবং ঐ সরলরেখার দৈর্ঘ্য ভেক্টর দুটির লব্ধির মান নির্দেশ করবে।
ধরা যাক একই বিন্দুতে একই সময়ে ক্রিয়াশীল দুটি ভেক্টর রাশি <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>P</mi><mo>→</mo></mover></math> ও <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>Q</mi><mo>→</mo></mover></math> -এর লব্ধি <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi mathvariant="normal">R</mi><mo>→</mo></mover></math> নির্ণয় করতে হবে।
<math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>P</mi><mo>→</mo></mover></math> নির্দেশী সরলরেখা AB-এর শীর্ষবিন্দু B তে <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>Q</mi><mo>→</mo></mover></math> নির্দেশী সরলরেখার আদিবিন্দু থাকে। এরূপে BC রেখা দ্বারা <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>Q</mi><mo>→</mo></mover></math> নির্দেশ করে <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>P</mi><mo>→</mo></mover></math> -এর আদিবিন্দু A এবং <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>Q</mi><mo>→</mo></mover></math> -এর শীর্ষবিন্দু C যুক্ত করি এবং রেখাটিকে A হতে C অভিমুখে তীর চিহ্নিত করি [চিত্র ১১২]। তা হলে তীর চিহ্নিত AC রেখাই <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi mathvariant="normal">R</mi><mo>→</mo></mover></math> নির্দেশ করবে। এখানে রাশি দুটির যোগফল নিম্ন উপায়ে লেখা হয় —
<math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi mathvariant="normal">R</mi><mo>→</mo></mover></math> = <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>P</mi><mo>→</mo></mover></math> + <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>Q</mi><mo>→</mo></mover></math> (1)
অনুরূপে দুই বা ততোধিক ভেক্টর রাশি যোগ করা যায়।
১.১৩ চিত্রে তিনটি ভেক্টর রাশি <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>P</mi><mo>→</mo></mover></math>, <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>Q</mi><mo>→</mo></mover></math> ও <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>S</mi><mo>→</mo></mover></math> যথাক্রমে তীর চিহ্নিত OA, AB ও BC সরলরেখায় নির্দেশ করে OC সরলরেখা দ্বারা এদের লব্ধি <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>R</mi><mo>→</mo></mover></math> সূচিত হয়েছে।
এখানে লব্ধি, <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>R</mi><mo>→</mo></mover></math> = <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>P</mi><mo>→</mo></mover></math> + <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>Q</mi><mo>→</mo></mover></math> + <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>S</mi><mo>→</mo></mover></math>
ব্যাখ্যা ঃ মনে করি <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>P</mi><mo>→</mo></mover></math> ও <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>Q</mi><mo>→</mo></mover></math> দুটি ভেক্টর যোগ করতে হবে। প্রথমে <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>P</mi><mo>→</mo></mover></math> -এর প্রান্ত বা শীর্ষবিন্দুর সাথে <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>Q</mi><mo>→</mo></mover></math> -এর আদি বিন্দু যুক্ত করে ভেক্টর দুটি মানে ও দিকে বাহু AB ও BC দ্বারা সূচিত করা হল। এখন <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>P</mi><mo>→</mo></mover></math> -এর আদি বিন্দু ও <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>Q</mi><mo>→</mo></mover></math> -এর শেষ বিন্দু যোগ করে ABC ত্রিভুজটি সম্পূর্ণ করা হল। AC বাহুটিই দিকে ও মানে <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>P</mi><mo>→</mo></mover></math> ও <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>Q</mi><mo>→</mo></mover></math> -এর লব্ধি ভেক্টর <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>R</mi><mo>→</mo></mover></math> নির্দেশ করে [চিত্র ১.১৪]।
অর্থাৎ, <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mrow><mi>A</mi><mi>B</mi></mrow><mo>→</mo></mover><mo> </mo><mo>+</mo><mover accent='true'><mrow><mi>B</mi><mi>C</mi></mrow><mo>→</mo></mover><mo> </mo><mo>=</mo><mover accent='true'><mi mathvariant="normal">AC</mi><mo>→</mo></mover></math>
বা, <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>P</mi><mo>→</mo></mover></math> + <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>Q</mi><mo>→</mo></mover></math> = <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>R</mi><mo>→</mo></mover></math>
পুনঃ, <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mrow><mi>A</mi><mi>B</mi></mrow><mo>→</mo></mover><mo> </mo><mo>+</mo><mover accent='true'><mrow><mi>B</mi><mi>C</mi></mrow><mo>→</mo></mover><mo> </mo><mo>=</mo><mover accent='true'><mi>AC</mi><mo>→</mo></mover><mo> </mo><mo>=</mo><mo>−</mo><mover accent='true'><mrow><mi>C</mi><mi>A</mi></mrow><mo>→</mo></mover><mo> </mo></math>
বা, <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mrow><mi>A</mi><mi>B</mi></mrow><mo>→</mo></mover><mo> </mo><mo>+</mo><mover accent='true'><mrow><mi>B</mi><mi>C</mi></mrow><mo>→</mo></mover><mo> </mo><mo>+</mo><mover accent='true'><mi>AC</mi><mo>→</mo></mover><mo> </mo><mo>=</mo><mn>0</mn></math>
ব্যাখ্যা ঃ মনে করি, <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>A</mi><mo>→</mo></mover><mo>,</mo><mover accent='true'><mi>B</mi><mo>→</mo></mover><mo>,</mo><mover accent='true'><mi>C</mi><mo>→</mo></mover><mo>,</mo><mover accent='true'><mi>D</mi><mo>→</mo></mover><mo>,</mo><mover accent='true'><mi>E</mi><mo>→</mo></mover></math> পাঁচটি ভেক্টর রাশি [চিত্র ১.১৫। এদের লব্ধি নির্ণয় করতে হবে। এখন প্রথম ভেক্টর রাশির শীর্ষবিন্দুর উপর দ্বিতীয় ভেক্টর রাশির পাদবিন্দু, দ্বিতীয় ভেক্টর রাশির শীর্ষবিন্দুর উপর তৃতীয় ভেক্টর রাশির পাদবিন্দু স্থাপন করি এবং এমনিভাবে ভেক্টর রাশিগুলোকে পর পর স্থাপন করি। তাহলে বহুভুজ সূত্রানুসারে প্রথম ভেক্টর রাশির আদি বিন্দু এবং শেষ ভেক্টর রাশির শীর্ষবিন্দুর সংযোজক ভেক্টর রাশি <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>R</mi><mo>→</mo></mover></math> -ই উল্লিখিত ভেক্টর রাশিগুলোর লব্ধির মান ও দিক নির্দেশ করবে।
লব্ধি, <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>R</mi><mo>→</mo></mover><mo>=</mo><mover accent='true'><mi>A</mi><mo>→</mo></mover><mo>+</mo><mover accent='true'><mi>B</mi><mo>→</mo></mover><mo>+</mo><mover accent='true'><mi>C</mi><mo>→</mo></mover><mo>+</mo><mover accent='true'><mi>D</mi><mo>→</mo></mover><mo>+</mo><mover accent='true'><mi>E</mi><mo>→</mo></mover></math>
মনে করি O বিন্দুতে একটি কণার উপর <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mrow><mi>O</mi><mi>A</mi></mrow><mo>→</mo></mover><mo>=</mo><mover accent='true'><mi>P</mi><mo>→</mo></mover></math> ও <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mrow><mi>O</mi><mi>C</mi></mrow><mo>→</mo></mover><mo>=</mo><mover accent='true'><mi>Q</mi><mo>→</mo></mover></math> ই দুটি ভেক্টর রাশি একই সময়ে কোণে ক্রিয়া করছে [চিত্র ১.১৬। OA ও OC-কে সন্নিহিত বাহু ধরে OABC সামন্তরিকটি অংকন করি এবং OB যুক্ত করি। এই সূত্রানুসারে উভয় ভেক্টরের ক্রিয়াবিদু O থেকে অংকিত কৰ্ণ -ই ভেক্টর P ও Q-এর লব্ধি R নির্দেশ করে।
<math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mrow><mi>O</mi><mi>A</mi></mrow><mo>→</mo></mover><mo>+</mo><mover accent='true'><mrow><mi>O</mi><mi>C</mi></mrow><mo>→</mo></mover><mo>=</mo><mover accent='true'><mrow><mi>O</mi><mi>B</mi></mrow><mo>→</mo></mover></math>
বা, <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>P</mi><mo>→</mo></mover></math> + <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>Q</mi><mo>→</mo></mover></math> = <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>R</mi><mo>→</mo></mover></math>
মনে করি লব্ধির মান R এবং কোণটি সূক্ষ্মকোণ। এখন B বিন্দু হতে OA-এর বর্ধিত অংশের উপর BN টানি যা বর্ধিত OA বাহুকে N বিন্দুতে ছেদ করল।
AB ও OC সমান্তরাল।
<AOC =<BAN = । আবার OBN ত্রিভুজের, <ONB = এক সমকোণ = 90°।
OB2 = ON2 + BN2 = (OA + AN)2 + BN2
= OA2 + 20A.AN + AN2 + BN2
আবার, BNA সমকোণী ত্রিভুজে, AB2 = AN2 + BN2
বা, OC2 = AN2 + BN2 [ AB = OC ]
এখন ত্রিকোণমিতির সাহায্যে আমরা পাই, cos <BAN = cos
AN = AB cos = OC cos
সুতরাং OB2 = OA2 + AB2 + 20A.AB cos
বা, OB2 = OA2 + OC2 + 2OA. OC cos
বা, R2 = P2 + Q2 + 2PQ cos
(4)
মনে করি P-এর সাথে কোণ উৎপন্ন করে লব্ধি R ক্রিয়া করছে।
সুতরাং OBN সমকোণী ত্রিভুজে, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>tan</mi><mfenced><mi>θ</mi></mfenced><mo>=</mo><mfrac><mrow><mi>B</mi><mi>N</mi></mrow><mrow><mi>O</mi><mi>N</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><mi>B</mi><mi>N</mi></mrow><mrow><mo>(</mo><mi>O</mi><mi>A</mi><mo>+</mo><mi>A</mi><mi>N</mi><mo>)</mo></mrow></mfrac></math> <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mfrac><mrow><mi>A</mi><mi>B</mi><mo> </mo><mi>s</mi><mi>i</mi><mi>n</mi><mi>α</mi></mrow><mrow><mo>(</mo><mi>O</mi><mi>A</mi><mo>+</mo><mi>A</mi><mi>B</mi><mo> </mo><mi>c</mi><mi>o</mi><mi>s</mi><mi>α</mi><mo>)</mo></mrow></mfrac><mo>=</mo><mfrac><mrow><mi>Q</mi><mo> </mo><mi>s</mi><mi>i</mi><mi>n</mi><mo> </mo><mi>α</mi></mrow><mrow><mo>(</mo><mi>P</mi><mo>+</mo><mi>Q</mi><mo> </mo><mi>c</mi><mi>o</mi><mi>s</mi><mo> </mo><mi>α</mi><mo>)</mo></mrow></mfrac><mo> </mo></math> (5) | BAN সমকোণী ত্রিভুজে, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>s</mi><mi>i</mi><mi>n</mi><mo> </mo><mi>α</mi><mo>=</mo><mfrac><mrow><mi>B</mi><mi>N</mi></mrow><mrow><mi>A</mi><mi>B</mi></mrow></mfrac></math> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>B</mi><mi>N</mi><mo>=</mo><mi>A</mi><mi>B</mi><mo> </mo><mi>s</mi><mi>i</mi><mi>n</mi><mo> </mo><mi>α</mi></math>
|
সমীকরণ (4) এবং সমীকরণ (5) হতে যথাক্রমে R এবং পাওয়া যায়।
সুতরাং, দুটি ভেক্টর একই দিকে ক্রিয়াশীল হলে এদের লন্ধির মান হবে ভেক্টরদ্বয়ের যোগফল এবং দিক হবে ভেক্টরদ্বয় যেদিকে ক্রিয়া করে সেদিকে।
মনে করি দুটি ভেক্টর রাশি এবং একই সময়ে কোন বিন্দুতে কোণে ক্রিয়া করছে। ভেক্টর যোগের সামান্তরিক সূত্রানুসারে এদের লব্ধির মান
<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>R</mi><mo>=</mo><msqrt><mrow><msup><mi>P</mi><mn>2</mn></msup><mo>+</mo><msup><mi>Q</mi><mn>2</mn></msup><mo>+</mo><mn>2</mn><mi>P</mi><mi>Q</mi><mo> </mo><mi>c</mi><mi>o</mi><mi>s</mi><mo> </mo><mi>α</mi></mrow></msqrt></math>
(ক) উপরোক্ত সমীকরণ হতে বলা যায় লব্ধি <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>R</mi><mo>→</mo></mover></math>-এর মান <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>P</mi><mo>→</mo></mover></math> এবং <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>Q</mi><mo>→</mo></mover></math> -এর মধ্যবর্তী কোণের উপর নির্ভর করে।
<math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>R</mi><mo>→</mo></mover></math> -এর মান সর্বাধিক হবে যখন cos C-এর মান সর্বাধিক হবে অর্থাৎ cos <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>α</mi></math> = 1 = cos 0°
বা, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>α</mi></math> = 0° হবে।
লব্ধির সর্বোচ্চ মান
<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>R</mi><mo>=</mo><msqrt><mrow><msup><mi>P</mi><mn>2</mn></msup><mo>+</mo><msup><mi>Q</mi><mn>2</mn></msup><mo>+</mo><mn>2</mn><mi>P</mi><mi>Q</mi><mo> </mo><mi>c</mi><mi>o</mi><mi>s</mi><mo> </mo><mi>α</mi></mrow></msqrt></math>
অন্যভাবে বলা যায়, দুটি ভেক্টর রাশির লন্ধির মান এদের যোগফল অপেক্ষা বড় হতে পারে না ।
(খ) লব্ধি R-এর সর্বনিম্ন মান হবে যখন cos <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>α</mi></math> -এর মান সর্বনিম্ন হবে অর্থাৎ cos <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>α</mi></math> =- 1 = cos 180°
বা, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>α</mi></math> = 180° হবে।
<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>R</mi><mo>=</mo><msqrt><mrow><msup><mi>P</mi><mn>2</mn></msup><mo>+</mo><msup><mi>Q</mi><mn>2</mn></msup><mo>−</mo><mn>2</mn><mi>P</mi><mi>Q</mi><mo> </mo></mrow></msqrt><mo>=</mo><msqrt><mrow><mo>(</mo><mi>P</mi><mo>−</mo><mi>Q</mi><msup><mo>)</mo><mn>2</mn></msup></mrow></msqrt><mo>=</mo><mi>P</mi><mo>−</mo><mi>Q</mi></math>
অতএব, দুটি ভেক্টর রাশি যখন একই সরলরেখা বরাবর পরস্পর বিপরীত দিকে ক্রিয়া করে তখন তাদের লঙ্ঘির মান সর্বনিম্ন হবে এবং লক্ষির সর্বনিম্ন মান ভেক্টর রাশি দুটির বিয়োগফলের সমান হবে। সুতরাং বলা যায়, দুটি ভেক্টর রাশির সর্বনিম্ন মান এদের বিয়োগফল অপেক্ষা ছোট হতে পারে না। এখানে উল্লেখ্য যে (7) নং সমীকরণে ~ চিহ্নটি P এবং Q-এর মধ্যে বিয়োগফল নির্দেশ করে, তবে P এবং Q এদের মধ্যে যেটি বড় সেটি আগে লিখতে হবে অর্থাৎ Q যদি P অপেক্ষা বড় হয় তবে P Q =QP
দুটি ভেক্টর রাশির বিয়োগ বলতে একটি ভেক্টরের সাথে অপরটির ঋণাত্মক ভেক্টরের যোগফল বুঝায়। ->
<math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>P</mi><mo>→</mo></mover></math>, <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>Q</mi><mo>→</mo></mover></math> হলো ভেক্টর দুটির বিয়োগফল <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi mathvariant="normal">C</mi><mo>→</mo></mover></math> হলে দেখা যায়, <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi mathvariant="normal">C</mi><mo>→</mo></mover></math> = <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>P</mi><mo>→</mo></mover></math> - <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>Q</mi><mo>→</mo></mover></math> = <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>P</mi><mo>→</mo></mover></math> + (- <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>Q</mi><mo>→</mo></mover></math>)
ভেক্টর যোগের ত্রিভুজ সূত্র, সামান্তরিক সূত্র ও বহুভুজ সূত্র প্রভৃতি ভেক্টরের বিয়োগের ক্ষেত্রেও প্রযোজ্য।
ধরা যাক <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>P</mi><mo>→</mo></mover></math> ও <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>Q</mi><mo>→</mo></mover></math> ভেক্টর দুটির বিয়োগফল নির্ণয় করতে হবে। প্রথমে ভেক্টর দুটিকে মান ও দিকে অপরিবর্তিত রেখে একই আদি বিন্দু হতে OA ও OB অঙ্কন করতে হয় [চিত্র ১:১৭]। এরপর <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>Q</mi><mo>→</mo></mover></math> -এর প্রান্ত বিন্দু B-এর সাথে <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>P</mi><mo>→</mo></mover></math> -এর প্রান্ত বিন্দু A যোগ করলে <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi mathvariant="normal">BA</mi><mo>→</mo></mover></math> -ই মানে ও দিকে <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>P</mi><mo>→</mo></mover></math> – <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>Q</mi><mo>→</mo></mover></math> ভেক্টরকে সূচিত করে।
অতএব, <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi mathvariant="normal">BA</mi><mo>→</mo></mover></math> = <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>P</mi><mo>→</mo></mover></math> - <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>Q</mi><mo>→</mo></mover></math>
ধরা যাক <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>P</mi><mo>→</mo></mover></math> ও <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>Q</mi><mo>→</mo></mover></math> দুটি ভেক্টর। <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>P</mi><mo>→</mo></mover></math> ও <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>Q</mi><mo>→</mo></mover></math> ভেক্টর দুটিকে একই আদি বিন্দু হতে উপযুক্ত বাহু দ্বারা সূচিত করতে হয়[চিত্র ১:১৮]। এরপর <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>Q</mi><mo>→</mo></mover></math> -এর সমান অথচ বিপরীতমুখী বাহু দ্বারা - <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>Q</mi><mo>→</mo></mover></math> -কে নির্দেশ করা হয়। এখন OA ও OC-কে সন্নিহিত বাহু ধরে OADC সামান্তরিক অঙ্কন করলে কর্ণ <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi mathvariant="normal">OD</mi><mo>→</mo></mover></math> উক্ত ভেক্টর দুটির বিয়োগফল নির্দেশ করে ।
অর্থাৎ, কর্ণ <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi mathvariant="normal">OD</mi><mo>→</mo></mover></math> = <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi mathvariant="normal">OA</mi><mo>→</mo></mover></math> + <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi mathvariant="normal">AD</mi><mo>→</mo></mover></math>
= <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>P</mi><mo>→</mo></mover></math> + (- <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>Q</mi><mo>→</mo></mover></math>) = <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>P</mi><mo>→</mo></mover></math> - <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>Q</mi><mo>→</mo></mover></math>।
<math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>P</mi><mo>→</mo></mover></math> + <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>Q</mi><mo>→</mo></mover></math> = <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>Q</mi><mo>→</mo></mover></math> + <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>P</mi><mo>→</mo></mover></math>
প্রমাণ : মনে করি, <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>P</mi><mo>→</mo></mover></math> ও <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>Q</mi><mo>→</mo></mover></math> দুটি ভেক্টর রাশি এবং R রাশি দুটির লব্ধি [ চিত্র ১:১৯ ]।
ত্রিভুজ সূত্র অনুসারে, OAB ত্রিভুজে
<math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>R</mi><mo>→</mo></mover></math> = <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>P</mi><mo>→</mo></mover></math> + <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>Q</mi><mo>→</mo></mover></math>
অর্থাৎ <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi mathvariant="normal">OB</mi><mo>→</mo></mover></math> = <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi mathvariant="normal">OA</mi><mo>→</mo></mover></math> + <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi mathvariant="normal">AB</mi><mo>→</mo></mover></math>
এখন OABC সামান্তরিক অঙ্কন করি এবং OC ও CB-এ যথাক্রমে AB ও OA এর ন্যায় তীর চিহ্নিত করি। OCB ত্রিভুজে
<math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi mathvariant="normal">OB</mi><mo>→</mo></mover></math> = <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi mathvariant="normal">OC</mi><mo>→</mo></mover></math> + <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi mathvariant="normal">CB</mi><mo>→</mo></mover></math> (ত্রিভুজ সূত্র অনুসারে),
'অর্থাৎ <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>P</mi><mo>→</mo></mover></math> + <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>Q</mi><mo>→</mo></mover></math> = <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>Q</mi><mo>→</mo></mover></math> + <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>P</mi><mo>→</mo></mover></math>
এটিই হল বিনিময় সূত্র ।
তেমনি স্কেলার রাশিও বিনিময় সূত্র মেনে চলে।
মনে করি <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>P</mi><mo>→</mo></mover></math>, <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>Q</mi><mo>→</mo></mover></math> এবং <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>R</mi><mo>→</mo></mover></math> তিনটি ভেক্টর রাশি [চিত্র ১:২০ ]। এদেরকে যথাক্রমে <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi mathvariant="normal">AB</mi><mo>→</mo></mover></math>, <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi mathvariant="normal">BC</mi><mo>→</mo></mover></math> এবং <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi mathvariant="normal">CD</mi><mo>→</mo></mover></math> রেখা দ্বারা সূচিত করা হয়েছে। এখন AC, BD এবং AD যোগ করি। অতএব ত্রিভুজের সূত্র হতে পাই,
ABC ত্রিভুজে <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi mathvariant="normal">AC</mi><mo>→</mo></mover></math> = <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi mathvariant="normal">AB</mi><mo>→</mo></mover></math> + <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi mathvariant="normal">BC</mi><mo>→</mo></mover></math> = <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>P</mi><mo>→</mo></mover></math> + <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>Q</mi><mo>→</mo></mover></math>
ACD ত্রিভুজে, <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi mathvariant="normal">AD</mi><mo>→</mo></mover></math> = <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi mathvariant="normal">AC</mi><mo>→</mo></mover></math> + <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi mathvariant="normal">CD</mi><mo>→</mo></mover></math>
=( <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>P</mi><mo>→</mo></mover></math> + <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>Q</mi><mo>→</mo></mover></math>) = <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>R</mi><mo>→</mo></mover></math>
আবার, BCD ত্রিভুজে, <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi mathvariant="normal">BD</mi><mo>→</mo></mover></math> = <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi mathvariant="normal">BC</mi><mo>→</mo></mover></math>+ <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi mathvariant="normal">CD</mi><mo>→</mo></mover></math> = <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>Q</mi><mo>→</mo></mover></math>+ <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>R</mi><mo>→</mo></mover></math> (9)
এবং ABD ত্রিভুজে, <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi mathvariant="normal">AD</mi><mo>→</mo></mover></math> = <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi mathvariant="normal">AB</mi><mo>→</mo></mover></math> + <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi mathvariant="normal">BD</mi><mo>→</mo></mover></math> = <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>P</mi><mo>→</mo></mover></math> + ( <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>Q</mi><mo>→</mo></mover></math>+ <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>R</mi><mo>→</mo></mover></math>) (10)
সমীকরণ (9) এবং সমীকরণ (10) হতে পাই,
(<math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>P</mi><mo>→</mo></mover></math>+<math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>Q</mi><mo>→</mo></mover></math>) + <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>R</mi><mo>→</mo></mover></math> = <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>P</mi><mo>→</mo></mover></math> + (<math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>Q</mi><mo>→</mo></mover></math>+ <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>R</mi><mo>→</mo></mover></math>)